
Copyright © 2023 by Hugo Peters
Version 1.9 Print - 21/09/2023

Dutch Game Awards 2016
Soul Knight - Nominee Best Student Game Design
I was heavily involved in the design process of Soul Knight, designing most of the gameplay mechanics.
We were nominated alongside two other projects, from a total of 25 projects.

Dutch Game Awards 2017
Bolt Storm - Winner Best Student Technical Achievement
I designed and implemented most gameplay systems in the game, from player movement to combat, gameplay scripting, the
game's tutorial and more. We were nominated alongside two other projects, from a total of 20 projects.

Best Code in a Student Project
Soul Knight won this award at our University, NHTV Breda University of Applied Sciences, in my 2nd year, as well as 'Best Art
in a Student Project' and 'Best Game' after our first few months of development (after each 'block' awards were given).
There were 16 other projects eligible for these rewards.

Best Code in a Student Project
Bolt Storm won this award at our University, NHTV Breda University of Applied Sciences, in my 3rd year. There were 7 other
projects eligible for these rewards.

Unreal Engine Community Highlights Feature
Soul Knight was featured in the July edition of Epic Games' community highlights video.

'International Game Architecture & Design' NHTV Breda University of Applied Sciences, The Netherlands

September 2014 - June 2018
Bachelor of Science (BSc) - graduated cum laude

The Netherlands'Higher General Secondary Education' (HAVO)
2010 - 2014

NHTV UniversitySoul Knight - Lead Programming December 2015 - June 2016
Student project, with around 25 team members. 4 programmers in total. Using Unreal Engine 4.

- Implemented all gameplay mechanics and state machine in C++ - Leadership over other programmers, managing tasks and deadlines
- Free-roaming 3rd person camera in C++ - Built Unreal Engine 4 from source to include PlayStation 4 functionality
- Optimisation for PlayStaion 4 using profiler and debugging solutions - Animation systems through Blueprints and C++
- Level streaming framework in C++ on top of UE4's - Light / fog blending based on triggers and splines
- Gameplay mechanics using advanced engine features such as - Gameplay design for core mechanics
procedural meshes
- Planned, keyframed, shot and edited the reveal teaser trailer

NHTV UniversityBolt Storm - Gameplay Programming October 2016 - August 2017
Student project, with around 25 team members. 12 programmers in total. Using Unreal Engine 4.

- Unreal Engine 4 source build to include Xbox One functionality - Support to many technical issues within the team
- Custom finite state machine in C++ with full Blueprints accessibility - Animation blending and interpolation features in C++
- Implemented all player logic in C++ using the custom state machine - Custom collision checking for fast paced combat
- Melee and ranged combat system in C++ - Slot manager for mapping skeleton sockets to weapons
- UI implementation & design - Aim-assist system with object prioritization

Learn more about these and other projects on my portfolio: https://hugo.fyi/

warlock July 2016 - Present
Game engine from scratch in C++, with custom C# build tools.

- Cross-platform support for Windows x86/x64, WebAssembly / Emscripten. DX11 / OpenGLES (emulated using Google ANGLE on Windows)
- Easily extendible and flexible systems, most built on a small custom type registry system, including amaterial editor (generated shaders, custom shader pipeline using MCPP,

hlslparser, glsl-optimizer),model editor (import using FBX SDK), sequence editor (component based tracks, "clips", curve channels), curve editor (interpolation types ala Blender),
animation editor (using an entirely custom nodegraph system), level editor (component based entity system, combining ideas from Unreal and Unity), template editor (like UE4's
Blueprints or Unity's prefabs), asset pipeline (custom asset "cooker" tool built on top of the engine, does things like platform-dependent shader generation, texture conversion, platform

packaging), json / binary based serialization (supports custom types, emphasis on fast binary deserialization, during production assets are stored in json, get baked to binary using the asset

cooker)

- Libraries/APIs used include: Bullet Physics, Emscripten, FBX SDK, hlslparser,mcpp (shader generation / preprocesser parsing), glsl-optimizer, NoesisGUI, dear imgui
(stripped out in release mode), OpenAL (audio with plugin system that supports custom decoders like FluidSynth), rapidjson, plf-colony (used for storing things like entity components), stb,
sdl (on Emscripten, OpenGL ES on Windows emulation), zlib
- Rendering is currently limited to forward rendering, using a PBR implementation based on Google's Filament renderer. Uses a custom baked light probe solution to
achieve IBL. I have written a deferred renderer on top of the engine as well, but this is not mainline (integration of different rendering modes is pending..)
- Entirely modular, each module is a separate Visual Studio project, with dependency rules. Code has a module framework, with at least one module per "project"
- Build toolchain written in C#, features a module rules compiler (compiles module rules to single DLL, keeps tracks of changes etc.), custom incremental compilation, task-
scheduler for compilation/linking tasks, very fast "nothing to do" detection, generation of engine version stamp, Visual Studio project generation)

DirectX 11 Renderer November 2015 - January 2016
Basic renderer using abstracted DirectX 11 API, supports Physically Based Rendering

- Basic implementation of render windows in Qt - Input handling for keyboard and gamepad
- Physically Based Rendering

The Runthrough December 2011 - 2016
Music / rythm action-arcade game. Went through multiple redesigns / rewrites, now working on the final revision using my 'Warlock' engine.

- 'Track Development Tool' - slick level creator with backgrounds effects editor, - Went from Game Maker to C� to C++
music scrubbing, login / account / licensing system and more.

Reverse Engineering / Porting 'Beyond: Two Souls' April 2014 - ?
I was asked to stop working on it by Quantic Dream...

- Reversed class system, type/id registration code - Reversed and implemented sequences (camera shots, dialog, audio,
- Reversed Lua bytecode by making a converter for big/little endian script events, etc), audio streaming, model / vertex formats, GUI
- Implemented a custom Lua framework for auto-generated game scripts middleware "Menus Master", choice events / branching story, user
- Implemented custom class system with binary components actions, Lua function handlers, area / scene loading, videos, more?
- Around 6 full rewrites of my 'port' from the ground up - Literally boots the game like a PS3 would, natively - not a remake
- Most of the game playable on PC, with models, but no shaders :(

Professional Experience

Ubisoft / Massive Entertainment - Malmö, Sweden January 2018 - April 2020

Junior Game Programmer

Ubisoft / Massive Entertainment - Malmö, Sweden April 2020 - Present

Narrative Systems Programmer

Ubisoft / Massive Entertainment - Malmö, Sweden September 2017 - December 2017

Game Programmer Internship

Designing, implementing and maintaining complex systems for AAA-game titles 'Avatar: Frontiers of Pandora', 'Star Wars Outlaws' and
the Ubisoft-owned 'Snowdrop' engine.

28 December, 1996
born in Leiden, The Netherlands

hugopeters1996@gmail.comHugo Peters
GAME DEV, PROGRAMMER, DESIGNER

Beginner
Intermediate
Advanced
Professional

Coding
C++ C C# UE4 Blueprints Lua JavaScript PHP

ASP.NET HTML CSS Python

Software
Perforce GIT SVN

SOURCE CONTROL

After Effects Affinity Designer Flash ProPremiere Pro
DESIGN & EDITING

Word PowerPoint Excel Outlook Jira Confluence
PRODUCTIVITY

Visual Studio VSCode
IDEs

Unreal Engine 4 Unity Xenko
GAME ENGINES

Maya ZBrush Blender
3D TOOLS

SKILLS

EXPERIENCE

AWARDS


